
TRS: An Open-source Recipe for 
Teaching/Learning Robotics with a 

Simulator.

Learning Robotics with a Simulator: Setup Your Laptop in 5 min,
Code a Control, Navigation, Vision or Manipulation Project in 100 
Lines.

Renaud Detry
Peter Corke
Marc Freese



Joint Observation of Object Pose and Tactile Imprints for Online Grasp
Stability Assessment

Yasemin Bekiroglu Renaud Detry Danica Kragic

Abstract— This paper studies the viability of concurrent
object pose tracking and tactile sensing for assessing grasp
stability on a physical robotic platform. We present a kernel-
logistic-regression model of pose- and touch-conditional grasp
success probability. Models are trained on grasp data which
consist of (1) the pose of the gripper relative to the object,
(2) a tactile description of the contacts between the object
and the fully-closed gripper, and (3) a binary description
of grasp feasibility, which indicates whether the grasp can
be used to rigidly control the object. The data is collected
by executing grasps demonstrated by a human on a robotic
platform composed of an industrial arm, a three-finger gripper
equipped with tactile sensing arrays, and a vision-based object
pose tracking system. The robot is able to track the pose
of an object while it is grasping it, and it can acquire
grasp tactile imprints via pressure sensor arrays mounted on
its gripper’s fingers. We consider models defined on several
subspaces of our input data – using tactile perceptions or
gripper poses only. Models are optimized and evaluated with f -
fold cross-validation. Our preliminary results show that stability
assessments based on both tactile and pose data can provide
better rates than assessments based on tactile data alone.

I. INTRODUCTION

Object grasping and manipulation in real-world environ-
ments are, from a robotics viewpoint, uncertain processes.
Despite efforts in improving autonomous grasp planners,
either by learning or by building into agents sophisticated
visuomotor programs, one cannot assume that a grasp will
work exactly as planned. One obvious reason for this,
amongst many other, is that the perceptual observations on
which the planner bases its reasoning are always noisy. It
is thus unlikely that the robot’s fingers will come in contact
with the object at the exact intended points. The object will
generally move while fingers are being closed, and the final
object-gripper configuration, even if geometrically similar to
the intended one, may present a prohibitively different force
configuration. For this reason, executing grasping actions in
an open-loop system is unlikely to prove viable in real-
world environments. Real-world environments will often
require a closed-loop system in which perceptual feedback
is constantly monitored and triggers plan corrections.

Amongst the multitude of available sensors that exist,
vision and touch seem particularly relevant for grasping.
Vision-driven grasping and manipulation have been exten-
sively studied [1], [2]. Vision has typically been used to plan

Y. Bekiroglu, R. Detry and D. Kragic are with the Centre
for Autonomous Systems, CSC, KTH, Stockholm, Sweden.
yaseminb,detryr,danik@csc.kth.se.

This work was supported by EU through the project CogX, FP7-IP-
027657, and GRASP, FP7-IP-215821 and Swedish Foundation for Strategic
Research.

Fig. 1. Experimental robotic platform, composed of an industrial arm, a
three-finger gripper equipped with tactile sensing arrays, and a camera (on
the right).

grasping actions, and to update action parameters as objects
move. Touch-based grasp controllers have also been studied,
either for controlling finger forces to avoid slippage and to
prevent crushing objects [3], [4], [5], or for assessing grasp
stability [6], [7].

In this paper, we study the joint impact of visual and
tactile sensing on grasp stability assessment. Considering
vision and touch separately brings valuable information on
grasp stability. However, in many situations one modality can
substantially help disambiguating the readings obtained from
the other one. For instance, it is conceivable that for some
object, two grasps approaching from different directions
would yield similar tactile readings, but one would allow
for robustly moving the object while the other would let the
object slip away. Such situations may occur, e.g., because one
of the grasps benefits from an extra gripper-object contact
point in an area that is not covered by tactile sensors, or
because of a different relative configuration of the grasp
with respect to the center of mass of the object. Considering
both modalities jointly should intuitively lead to more robust
assessments. We present a platform equipped with hardware
and software components which allow it to obtain 6D object
pose (3D position and 3D orientation) and tactile imprint
information during a grasping action, and we suggest means
of using these data to learn a model of grasp stability.

Our robotic platform is composed of an industrial arm,
a three-finger gripper equipped with tactile sensing arrays,
and a vision-based object pose tracking system (see Figure
1). The robot is able to track the pose of an object while it
is grasping it despite object occlusions, and it can acquire
grasp tactile imprints via pressure sensor arrays mounted on
its gripper’s fingers.



TRS: an environment that

• can be setup in a few minutes,

• allows students to code vision, navigation, manipulation in few lines of 
code



V-REP + Peter Corke’s Matlab Robot Toolbox

Toolbox: Code
•Control
•Vision
•Navigation

in 100 lines!

VREP:
•Trivial installation — Linux, Mac, Win
•Remote API for C++, Python, Matlab, ROS



Program: http://teaching-robotics.org/trs2014/

04/09/14 11:11TRS 2014 – An Open-source Recipe for Teaching (and Learning) Robotics with a Simulator – IROS Tutorial

Page 3 of 3file:///Volumes/Data/Users/detryr/Sites/acad-website/events/trs2014/trs2014/index.html

Abstracts should be sent via email to Renaud Detry.

Program
The tutorial will take place on the 14th of September, 2014. The (tentative)
program of the day is as follows:

Session 1: 8:30–10:00 (1:30 hours)

8:30–8:40: Welcome and Introduction
Renaud Detry (University of Liège, Belgium)

8:40–9:20: Tuto 1
The V-REP Simulator and its Matlab API
Marc Freese (Coppelia Robotics)

9:20–10:00: Tuto 2
The Robotics Toolbox for MATLAB
Peter Corke (Queensland University of Technology, Australia)

COFFEE BREAK

Session 2: 10:30–12:30 (2 hours)

10:30–11:10: Tuto 3
A Robotics Project in Matlab
Renaud Detry (University of Liège, Belgium)

11:10–11:35: Practical Session
Installation on the Participants' Computers

11:35–11:45: Selected Contributions
KUKA LWR4 dynamic modeling in V-REP and remote control via
Matlab/Simulink
Marco Cognetti and Massimo Cefalo (Sapienza Universita di Roma)

11:45–12:00: Discussion and Closing

Organizers
Renaud Detry, University of Liege, Belgium
Peter Corke, Queensland University of Technology, Australia
Marc Freese, Coppelia Robotics

Contact
For further inquiries, please contact one of the organisers.

Valid HTML5 and CSS Renaud Detry, Peter Corke, Marc Freese

http://teaching-robotics.org/trs2014/
http://teaching-robotics.org/trs2014/


TRS: An Open-source Recipe for 
Teaching/Learning Robotics with a 

Simulator.

Learning Robotics with a Simulator: Setup Your Laptop in 5 min,
Code a Control, Navigation, Vision or Manipulation Project in 100 
Lines.

Renaud Detry
University of Liège, Belgium



• Involves: control, navigation, mapping, vision and 
manipulation.
•Goal: pickup groceries from a table and store them in 

baskets.





What You Get 

http://teaching-robotics.org/trs

We provide a complete recipe for organizing the project:
• a V-REP model of a house floor and a youBot,
• a Matlab script that illustrates access the robot's sensors and actuators,
• a page that explains how to setup a laptop to work on the project,
• a page that presents the project definition: objectives, milestones, a description 

of the robot and the documentation of the Matlab functions that access the 
robot's sensors and actuators.

http://teaching-robotics.org/trs
http://teaching-robotics.org/trs


1) V-REP model of a youBot and a house



2) Matlab script showing how to access the youBot
function youbot()!
% youbot Illustrates the V-REP Matlab bindings.!
!
% (C) Copyright Renaud Detry 2013.!
% Distributed under the GNU General Public License.!
% (See http://www.gnu.org/copyleft/gpl.html)!
   !
   disp('Program started');!
   %Use the following line if you had to recompile remoteApi!
   %vrep = remApi('remoteApi', 'extApi.h');!
   vrep=remApi('remoteApi');!
   vrep.simxFinish(-1);!
   id = vrep.simxStart('127.0.0.1', 19997, true, true, 2000, 5);!
   !
   if id < 0,!
   disp('Failed connecting to remote API server. Exiting.');!
   vrep.delete();!
   return;!
   end!
   fprintf('Connection %d to remote API server open.\n', id);!
   !
   % Make sure we close the connexion whenever the script is interrupted.!
   cleanupObj = onCleanup(@() cleanup_vrep(vrep, id));!
   !
   % This will only work in "continuous remote API server service"!
   % See http://www.v-rep.eu/helpFiles/en/remoteApiServerSide.htm!
   res = vrep.simxStartSimulation(id, vrep.simx_opmode_oneshot_wait);!
   % We're not checking the error code - if vrep is not run in continuous remote!
   % mode, simxStartSimulation could return an error.!
   % vrchk(vrep, res);!
   !
   % Retrieve all handles, and stream arm and wheel joints, the robot's pose,!
   % the Hokuyo, and the arm tip pose.!
   h = youbot_init(vrep, id);!
   h = youbot_hokuyo_init(vrep, h);!
   !
   % Let a few cycles pass to make sure there's a value waiting for us next time!
   % we try to get a joint angle or the robot pose with the simx_opmode_buffer!
   % option.!
   pause(.2);!
   !
   % Constants:!
   !
   timestep = .05;!
   wheelradius = 0.0937/2; % This value may be inaccurate. Check before using.!
   !
   % Min max angles for all joints:!
   armJointRanges = [-2.9496064186096,2.9496064186096;!
                     -1.5707963705063,1.308996796608;!
                     -2.2863812446594,2.2863812446594;!
                     -1.7802357673645,1.7802357673645;!
                     -1.5707963705063,1.5707963705063 ];!
   !

   startingJoints = [0,30.91*pi/180,52.42*pi/180,72.68*pi/180,0];!
   !
   % In this demo, we move the arm to a preset pose:!
   pickupJoints = [90*pi/180, 19.6*pi/180, 113*pi/180, -41*pi/180, 0*pi/180];!
   !
   % Tilt of the Rectangle22 box!
   r22tilt = -44.56/180*pi;!
   !
   !
   % Parameters for controlling the youBot's wheels:!
   forwBackVel = 0;!
   leftRightVel = 0;!
   rotVel = 0;!
   !
   disp('Starting robot');!
   !
   % Set the arm to its starting configuration:!
   res = vrep.simxPauseCommunication(id, true); vrchk(vrep, res);!
   for i = 1:5,!
   res = vrep.simxSetJointTargetPosition(id, h.armJoints(i),...!
                                         startingJoints(i),...!
                                         vrep.simx_opmode_oneshot);!
   vrchk(vrep, res, true);!
   end!
   res = vrep.simxPauseCommunication(id, false); vrchk(vrep, res);!
   !
   plotData = true;!
   if plotData,!
   subplot(211)!
   drawnow;!
   [X,Y] = meshgrid(-5:.25:5,-5.5:.25:2.5);!
   X = reshape(X, 1, []);!
   Y = reshape(Y, 1, []);!
   end!
   !
   % Make sure everything is settled before we start!
   pause(2);!
   !
   [res homeGripperPosition] = ...!
     vrep.simxGetObjectPosition(id, h.ptip,...!
                                h.armRef,...!
                                vrep.simx_opmode_buffer);!
   vrchk(vrep, res, true);!
   fsm = 'rotate';!
   !
   while true,!
   tic!
   if vrep.simxGetConnectionId(id) == -1,!
   error('Lost connection to remote API.');!
   end!
   !
   [res youbotPos] = vrep.simxGetObjectPosition(id, h.ref, -1,...!
                                                vrep.simx_opmode_buffer);!

   vrchk(vrep, res, true);!
   [res youbotEuler] = vrep.simxGetObjectOrientation(id, h.ref, -1,...!
                                                     vrep.simx_opmode_buffer);!
   vrchk(vrep, res, true);!
   !
   if plotData,!
   % Read data from the Hokuyo sensor:!
   [pts contacts] = youbot_hokuyo(vrep, h, vrep.simx_opmode_buffer);!
   !
   in = inpolygon(X, Y, [h.hokuyo1Pos(1) pts(1,:) h.hokuyo2Pos(1)],...!
                  [h.hokuyo1Pos(2) pts(2,:) h.hokuyo2Pos(2)]);!
   !
   subplot(211)!
   plot(X(in), Y(in),'.g', pts(1,contacts), pts(2,contacts), '*r',...!
        [h.hokuyo1Pos(1) pts(1,:) h.hokuyo2Pos(1)],...!
        [h.hokuyo1Pos(2) pts(2,:) h.hokuyo2Pos(2)], 'r',...!
        0, 0, 'ob',...!
        h.hokuyo1Pos(1), h.hokuyo1Pos(2), 'or',...!
        h.hokuyo2Pos(1), h.hokuyo2Pos(2), 'or');!
   axis([-5.5 5.5 -5.5 2.5]);!
   axis equal;!
   drawnow;!
   !
   end!
   angl = -pi/2;!
   !
   if strcmp(fsm, 'rotate'),!
   rotVel = 10*angdiff(angl, youbotEuler(3));!
   if abs(angdiff(angl, youbotEuler(3))) < 1/180*pi,!
   rotVel = 0;!
   fsm = 'drive';!
   end!
   elseif strcmp(fsm, 'drive'),!
   forwBackVel = -20*(youbotPos(1)+3.167);!
   !
   if youbotPos(1)+3.167 < .001,!
   forwBackVel = 0;!
   vrep.simxSetObjectOrientation(id, h.rgbdCasing, h.ref,...!
                                 [0 0 pi/4], vrep.simx_opmode_oneshot);!
   for i = 1:5,!
   res = vrep.simxSetJointTargetPosition(id, h.armJoints(i), pickupJoints(i),...!
                                         vrep.simx_opmode_oneshot);!
   vrchk(vrep, res, true);!
   end!
   if plotData,!
   fsm = 'snapshot';!
   else,!
   fsm = 'extend';!
   end!
   end!
   elseif strcmp(fsm, 'snapshot'),!
   % Read data from the range camera!
   !

   % Reading a 3D image costs a lot to VREP (vrep has to simulate the image). It!
   % also requires a lot of bandwidth, and processing a 3D point cloud (for!
   % instance, to find one of the boxes or cylinders that the robot has to!
   % grasp) will take a long time in Matlab. In general, you will only want to!
   % capture a 3D image at specific times, for instance when you believe you're!
   % facing one of the tables.!
   !
   % Reduce the view angle to better see the objects!
   res = vrep.simxSetFloatSignal(id, 'rgbd_sensor_scan_angle', pi/8,...!
                                 vrep.simx_opmode_oneshot_wait);!
   vrchk(vrep, res);!
   % Ask the sensor to turn itself on, take A SINGLE 3D IMAGE,!
   % and turn itself off again!
   res = vrep.simxSetIntegerSignal(id, 'handle_xyz_sensor', 1,...!
                                   vrep.simx_opmode_oneshot_wait);!
   vrchk(vrep, res);!
   !
   fprintf('Capturing point cloud...\n');!
   pts = youbot_xyz_sensor(vrep, h, vrep.simx_opmode_oneshot_wait);!
   % Each column of pts has [x;y;z;distancetosensor]!
   % Here, we only keep points within 1 meter, to focus on the table!
   pts = pts(1:3,pts(4,:)<1);!
   subplot(223)!
   plot3(pts(1,:), pts(2,:), pts(3,:), '*');!
   axis equal;!
   view([-169 -46]);!
   !
   % Save the pointcloud to pc.xyz.!
   % (pc.xyz can be displayed with meshlab.sf.net).!
   fileID = fopen('pc.xyz','w');!
   fprintf(fileID,'%f %f %f\n',pts);!
   fclose(fileID);!
   fprintf('Read %i 3D points, saved to pc.xyz.\n', max(size(pts)));!
   !
   % Read data from the RGB camera!
   !
   % This is very similar to reading from the 3D camera. The comments in the 3D!
   % camera section directly apply to this section.!
   !
   res = vrep.simxSetIntegerSignal(id, 'handle_rgb_sensor', 1,...!
                                   vrep.simx_opmode_oneshot_wait);!
   vrchk(vrep, res);!
   fprintf('Capturing image...\n');!
   [res resolution image] = ...!
     vrep.simxGetVisionSensorImage2(id, h.rgbSensor, 0,...!
                                    vrep.simx_opmode_oneshot_wait);!
   vrchk(vrep, res);!
   fprintf('Captured %i pixels.\n', resolution(1)*resolution(2));!
   subplot(224)!
   imshow(image);!
   drawnow;!
   fsm = 'extend';!
   elseif strcmp(fsm, 'extend'),!



Practice Navigation, Grasping, Vision in 5 Minutes

vrep = remApi('remoteApi', 'extApi.h');
id = vrep.simxStart('127.0.0.1', 57689, true, true, 2000, 5);

[res image] = vrep.simxGetVisionSensorImage(id, cam);

vrep.simxSetJointTargetVelocity(id, wheel1, 10);

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/image.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/image.html


Project Definition

Aim of the project: put the 
objects five baskets distributed 
across the house



Project Definition

•Object are either cylindrical or box-
shaped.
•The bases of boxes and cylinders 

are fixed
•Objects are initially placed on two 

tables facing the youBot's starting 
position.
•One one table, objects are placed 

upright. On the other table, stacked



Project Definition

•Baskets are distributed 
around the house.
•There’s a landmark 

object next to each 
basket.
•The landmark allow 

the robot to identify 
the room to which 
each basket belongs



Project Definition

• inst(1).shape: shape of the first object (either box or 
cylinder).

• inst(1).color: color of the first object (R, G, B values).
• inst(1).picture: path to an image of the landmark next to 

which is located the basket in which object 1 must go.
• inst(2).shape: shape of the second object (either box or 
cylinder).

• inst(2).color: color of the second object (R, G, B values).
• inst(2).picture: path to an image of the landmark next to 

which is located the basket in which object 2 must go.
• ...

The robot has access to a list of instructions that 
tell into which basket each object must go:



Milestone A: Navigation

Building a map of the house (a map of the walls and other 
obstacles).
1.Using accurate localization (via simxGetObjectPosition on 
youBot_ref or youBot_center)

2.Without using simxGetObjectPosition on youBot_ref or 
youBot_center.

This milestone covers the following topics:
•Navigation and mapping: with the help of RTB, students learn how 

to manage a map, how to handle exploration, and how to plan 
trajectories that avoid obstacles
•Control: TRS provides raw access to the youBot’s wheels. A students 

learn to implement a controller that configures the robot’s position 
and orientation in order to follow a trajectory.
•Poses and reference frames: students learn to move points and 

velocity vectors from the frame of the robot to the world frame and 
vice verça.



Milestone B: Manipulation

Picking up objects and moving them to any room of the house 
(except the room where the objects start in) (not necessarily in a 
basket).
1.Moving only the objects from the first table (where objects 

stand upright), using V-REP IK. Objects can fall on the floor.
2.Moving all the objects (both tables), using V-REP IK. Objects 

can fall on the floor.
3.Moving all the objects (both tables), using V-REP IK. Objects 
cannot fall on the floor.

4.Moving all the objects (both tables), without using V-REP IK. 
Objects cannot fall on the floor.

This milestone covers the following topics:
•Articulated arms: students learn about forward and inverse 

kinematics.
•Vision/Fitting: locating objects, deciding where to place the 

gripper.



Milestone C: Vision

This milestone covers the following topics:
•Fitting: RANSAC or Hough, or other, to find the cylindrical 

baskets with the Hokuyo sensor
•Object recognition

Finding and identifying the baskets.
1.Finding the baskets and the tables.
2.Recognizing the landmark objects accompanying the baskets, based 

on the data from instructions.mat.



Milestone D: Manipulation+Vision

This milestone covers the following topics:
•Planning order and shortest paths for brining the objects to the 

baskets.

Manipulation+Vision
1.Placing the objects into arbitrary baskets (as long as there is 

the same number of objects in each basket). (Requires at 
least B.1 and C.1.)

2.Placing the objects into the appropriate basket, as indicated 
by instructions.mat. (Requires at least B.1 and C.2.)



Milestone E: Calibration

Computing the transformation between the frame of the 
vision sensor, and the frame of the robot. (Without 
simxGetObjectOrientation on rgbdSensor.)



The Robot: Configuration Signals

Turn vision sensors on/off: 
 handle_xyz_sensor, handle_xy_sensor, handle_rgb_sensor
 vrep.simxSetIntegerSignal(id, 'handle_rgb_sensor', 0)

The view angle of the depth camera and the RGB 
camera can be controlled via a signal named 
rgbd_sensor_scan_angle.

The gripper_open signal controls the gripper.

The km_mode signal turns the robot's inverse
kinematics mode on or off.



V-REP API: Authorized Calls



What You Get 

•Recipe for organizing a Master-level robotics project
•The project: pickup groceries from a table and store them 

in baskets.
• Involves: control, navigation, mapping, vision and 

manipulation.

http://teaching-robotics.org/trs

http://teaching-robotics.org/trs
http://teaching-robotics.org/trs


How To Use

• Freely distributed via GitHub
https://github.com/ULgRobotics/trs.git
• master branch: code & V-REP models (GPL)

• gh-pages branch: doc & project details (CC)

https://github.com/ULgRobotics/trs.git
https://github.com/ULgRobotics/trs.git


How To Use

• Freely distributed via GitHub
https://github.com/ULgRobotics/trs.git
• master branch: code & V-REP models (GPL)
• gh-pages branch: doc & project details (CC)

  Github serves the gh-pages branch over http
  via github.io

https://github.com/ULgRobotics/trs.git
https://github.com/ULgRobotics/trs.git


How To Use

• Freely distributed via GitHub
https://github.com/ULgRobotics/trs.git
• master branch: code & V-REP models (GPL)
• gh-pages branch: doc & project details (CC)

http://teaching-robotics.org/trs

https://github.com/ULgRobotics/trs.git
https://github.com/ULgRobotics/trs.git
http://teaching-robotics.org/trs
http://teaching-robotics.org/trs


Teaching-robotics.org

http://teaching-robotics.org/

http://roboticscourseware.org/

http://teaching-robotics.org/trs
http://teaching-robotics.org/trs
http://teaching-robotics.org/trs
http://teaching-robotics.org/trs


Learning Robotics with a Simulator:
Setup Your Laptop in 5 min,

Code a Control, Navigation, Vision or Manipulation 

http://teaching-robotics.org/trs

http://teaching-robotics.org/trs
http://teaching-robotics.org/trs


Control Exercise

If you have an internet connexion:
•Go to the bottom of http://teaching-robotics.org/trs2014
•Follow the instructions provided under the heading “Exercise”

If you do not have an internet connexion, or connexion too slow:
•Request one of our USB sticks
•Copy all of its contents to your hard drive
• Install the V-REP copy that corresponds to your system
•Expand the ZIP archive named trs.zip
• In the trs/youbot directory, you will find a script named 
control.m. Your task is to fill in the blanks in that script to make 
the robot follow the trajectory stored in the variable traj.

http://teaching-robotics.org/trs2014
http://teaching-robotics.org/trs2014

